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Abstract

Multi-agent learning plays an essential role in ubiquitous practical applications in-
cluding game theory, autonomous driving, etc. On the other end, goal-conditioned
learning attracts a surge of interests with the capability of solving a rich variety of
tasks and configurations. Nevertheless, the scenarios that combine both multi-agent
and goal-conditioned settings have not been considered previously, attributed to
the daunting challenges of both areas. In this work, we target multi-agent goal-
conditioned tasks, with the objective of learning a universal policy for multiple
agents to reach a set of sub-goals. This task necessitates the agents to execute dif-
ferently conditioned on the assigned sub-goals. In various scenarios, it is infeasible
to access direct rewards of actions and sub-goal assignment labels for each agent.
Hence, we resort to imitation learning using only expert demonstrations without
reward information or sub-goal assignment labels. To achieve that, we propose
a probabilistic graphical model, latent goal allocation (LGA), which explicitly
promotes the sub-goal assignment as a latent variable and generates corresponding
agent actions. We conduct experiments to show that the proposed LGA outperforms
existing baselines with interpretable sub-goal assignment processes.

1 Introduction

Multi-agent learning has witnessed a wave of strong interest due to the pervasive practical applications
including multi-robot control Matignon et al. (2012), game theory Mnih et al. (2015), autonomous
driving (Panait and Luke, 2005; Shalev-Shwartz et al., 2016), etc. This task aims at learning a policy
for each agent in a multi-agent environments Lowe et al. (2017). Notably, compared to the training
of a single-agent policy, multi-agent learning usually suffers from extra challenges including the
non-stationary environment for each agent induced by other agents’ actions, high variance of the
gradient of policies, and extremely high-dimensionality of the state and action space, etc Lowe et al.
(2017).

On the other end, goal-conditioned tasks are garnering a flurry of interest, with various application
scenarios in robotics including robot navigating, pick-and-place, in-hand manipulation Ding et al.
(2019), etc. Goal-conditioned tasks, referring to the problem of learning a universal policy for any
goal-reaching task upon demand, endows agents with a rich variety of abilities. Different from
targeting a fixed goal, goal-conditioned tasks are more sample-starved with respect to both quantity
and diversity for agents to generalize to unseen goals. Nevertheless, the targeted tasks were mainly
focused on single-agent cases, with the objective of learning a policy for one agent (Kaelbling, 1993;
Parascandolo et al., 2020; Teh et al., 2017; Ding et al., 2019; Schaul et al., 2015).

In this work, we combine both settings and target multi-agent goal-conditioned (MAGC) tasks, which
has not been considered previously to the best of our knowledge. We introduce the formulation of
MAGC by extending single-agent goal-conditioned tasks (Ding et al., 2019; Schaul et al., 2015),
where we represent the overall goal for multi-agents to reach as a set of sub-goals. At each time step,
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each agent usually only focuses on a sub-goal and interacts with other agents without communication.
Fig 1a illustrates one example of MAGC tasks, where the goal is to reach all the three landmarks and
each agent is supposed to reach a different landmark (sub-goal) without colliding with other agents.
Our objective is to learn a universal policy for each agent conditioned on any assigned sub-goal. A
real-life example of MAGC task would be the firefighting operations. While individual firefighter is
able to perform various duties such as supplying water, putting out fires or rescuing, during actual
operations, behaviors of each firefighter would be driven by his/her assigned tasks.

Targeting MAGC tasks, it is difficult to interact with the environment and have access to a direct
reward function and sub-goal labels for supervision Le et al. (2017). Thus, to learn a desired goal-
conditioned policy, we resort to imitation learning (IL) using only expert demonstrations without
sub-goal assignment labels and reward. One example of such expert demonstrations is illustrated in
Fig. 1b, targeting the task in Fig. 1a. Although IL has been widely exploited in both goal-conditioned
tasks (Kaelbling, 1993; Parascandolo et al., 2020; Teh et al., 2017; Ding et al., 2019; Schaul et al.,
2015) and multi-agent tasks Le et al. (2017), the lack of sub-goal assignment labels in expert data
makes it infeasible to directly extend existing supervised learning for MAGC methods. As a result, it
leads to a drastically challenging learning problem with incomplete labels. Specifically, since agents
don’t have access to their assigned sub-goal during training, we need to learn a goal-conditioned
policy from demonstration without observing the goal conditioned on. Going back to the firefighting
example, as a bystander, we do not know the tasks assigned to each firefighter, but still may want to
learn a goal-conditioned policy from what we observe, i.e., behaviors of firefighters.

With that in hand, we propose a probabilistic graphical model named latent goal allocation (LGA),
which explicitly treat the goal-conditioned policy as a latent generative process. We promote the sub-
goal assignment as a latent variable and generate the subsequent action execution policy, conditioned
on the inferred sub-goal assignment. Consequently, we are able to train the universal goal-conditioned
policy without the labels of sub-goal assignments in expert demonstrations.

In summary, our main contributions are as follows:

* We provide a formulation of multi-agent goal-conditioned (MAGC) tasks in which agent
behaviors are driven by some assigned sub-goals.

* We propose a multi-agent goal-conditioned imitation learning framework that models the
agents’ policy as a generative process, called latent goal allocation (LGA). Targeting tasks
of recovering agent policies from demonstrations without sub-goal assignment labels, our
framework significantly outperforms the baseline.

2 Problem Formulation

Multi-agent goals We firstly introduce the goal space for multi-agent tasks. We suppose the goal
for N agents can be represented as a set of K sub-goals G = {Gk}kK:l, for some integer K > 1,
where each G, € Gy denote the high-level information of the k-th kind of sub-goals in this multi-
agent task for k = 1,-- - , K. Here, each G, denotes the space of all possible sub-goals of the k-th
kind (WLOG, we assume homogeneous sub-goal spaces G; = G, = --- = G). Various single-agent
goal-conditioned tasks Ding et al. (2019); Schaul et al. (2015) regard a sub-goal as a state within
the state space to reach. Differently, we allow more general sub-goal represented by any high-level
information Schaul et al. (2015), such as the set of possible 2-D locations of the landmarks in Fig. 1a.

Basics of Markov games We consider partially observable Markov games Zhang et al. (2021);
Littman (1994); Lowe et al. (2017), as multi-agent generalization of MDPs. A partially ob-
servable Markov game is defined by a tuple (N, S, {O; }N  , { A {R:}N,v), where N =
{1,2,---, N} denotes the set of N > 1 agents, v € (0, 1] is the discount factor, and S denotes the
state space describing the possible configurations of all NV agents. O; and A; denote the space of
observation and action for the ¢-th agent respectively, for: = 1,2--- , N. In the goal-conditioned
settings, the reward and policy for N agents are also conditioned on the given set of sub-goals
G. At each time step, each agent i receives a private observation o; € O; and a immediate re-
ward R' : S x A; x G — [0,1]. A goal-conditioned policy of each agent i is represented by
mi+ O; X G — A;, so that ;(|o;, g;) specifies which action to execute given the current observation
o0; and sub-goal g;.



Multi-agent goal-conditioned tasks In this work, we focus on multi-agent tasks which need to be
solved by multi-agents cooperatively, competitively or both. MAGC tasks aim at learning policies
{m;}X_, for N agents respectively for each to reach the given sub-goal g; € G and interact with
other agents Panait and Luke (2005). At each time step, each i-th agent usually focuses on a certain
sub-goal g; € G = {Gk}szl. Without loss of generality, we consider homogeneous agents, meaning
that the agents play interchangeable roles in the team. Agent actions are only determined by the
observation o; and assigned sub-goal g;, but independent of the agent’s identity. Hence, all agents are
expected to share a same policy 7 = m =79 = --- = 7.

Assumptions We shall resort to imitation learning to solve MAGC tasks, usmg demonstratlons
without sub-goal assignment labels. Let 7 := ({0} } |, {al }]¥,,G', {0}, {a?}Y,, G2, )
denote an entire state-action-goal trajectory of N agents, where the superscripts denote time steps,
and G = {G1}£_ | denote the set of sub-goals to reach at the ¢-th time step. We assume access to
a set of demonstrations (trajectories) Dexpert With cardinality M. Each trajectory in Deypert is with
horizon length H, collected by an expert attempting to reach the set of sub-goals {G*, G2,--- G},
Concatenating all the trajectories with total length 1" = H M, we arrive at the expression as follows:

Dexpert := { ({0 }z 15 {at}z 1aGt) } (1

t=1

Objective Our ultimate goal is to learn a universal policy 7 for all N agents to choose the action
conditioned on the current state and their own sub-goal, i.e., 7(+|0;, g;). However, the demonstrations
from the expert only have the set of sub-goals {G},}1_, under chosen, while are lack of the label
of sub-goal for each agent, i.e., g; for i-th agent is unknown, Vi € 1, --- | N (For instance, we only
have locations of all sub-goals in demonstration in Fig. 1b, while lacking the matching of agent and
sub-goal pairs described by colors in Fig. 1a.) Therefore, to learn the policy 7 (in the training stage),

for each i-th agent, we only have a bunch of data pairs (of, G* = {G}}/ |, af)thl, yielding the
objective of MAGC tasks as the following optimization problem:

N
min  £0) = E((o)x | (a1}, .0) Do lznw(.wf,at)—aﬁnj, )
=1

where 7 is parameterized by ¢. The objective is to mimic the behavior of the expert by minimizing
the Euclidean distance between the actions taken by the policy 74 and the expert.
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(a) goal-conditioned navigation (b) expert demonstration (c) LGA

Figure 1: (a) targeted task illustration. (b) expert demonstrations without information about the
assigned sub-goals. (c) graphical model of LGA. The agent action a is generated conditioned on G,
where z is the inferred sub-goal index. Shaded variables are observed.

3 Self-Supervised Learning with Latent Goal Allocation

3.1 Introduction of latent goal

To begin, one key observation of the MAGC task setting is that, in each time step ¢, the assigned
sub-goal g! € {G4}E | for each i-th agent is unannotated, while being an essential variable for
the universal policy 7r( \oZ , g%) to choose a reasonable action. To address this challenge, we resort
to self-supervised learning where we infer the sub-goal assignment also from data in addition to
learning the universal goal-conditioned policy simultaneously. To specify, let z! denote the sub-goal



assignment index to infer for the i-th agent at the time step ¢, namely, g¢ = Gt Note that the

unknown sub-goal assignment index for each agent is hlghly uncertain, we turn to consider the
probability distribution of the sub-goal assignment index z! by estimating a posterior distribution
p(z;l0}, aj, GY).

79 Y

With the expression of the distribution over the sub- goal index z{ ~ p(-|ot,at, G!) and the corre-
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sponding sub-goal g! = G';, we rewrite (2) and arrive at the following optimization problem by

2
NE)
2

However, we observe (3) can’t be solved directly since the posterior distribution p(-|of, af, G*) is
unknown or computationally intractable . To proceed, we view the task as a probabilistic generative
process and treat 2! as a latent variable to generate the action a! with the current observation of.
Therefore, we propose a probabilistic graphical model, named latent goal allocation (LGA), to
describe the generative process of the goal-conditioned action, illustrated in Fig. 1c. As a result, using
Deypert, We can solve (3) by inferring the posterior of z! and learning the generative action policy

simultaneously.

taking expectation over all possible sub-goal selections as

N

t t t

min £(6,0) = B((o}8 | (a1}, G )~ Dogur, zimp(lotat G) [ZH% (Oi’Gz::)*“i
’ ) i=1

3.2 Latent goal allocation model

The key structure inside LGA is the latent variable z, which represents the sub-goal assignment index.
At any time step ¢, for the ¢-th agent, we are capable of inferring the posterior of the underlying sub-
goal assignment index z! from the data, Vi € 1,--- , N. Subsequently, we can utilize the estimated
assigned sub-goal g} = G; to pair the trajectory of each agent with the correct assigned sub-goal to

learn the goal-conditioned lpolicy.

To describe the generative process of LGA, we first introduce some notations for simplicity. We
rewrite the expert data over T time steps as Dexperr =: {0,a,G}, where 0o = {{o!}¥ }1,
(resp. a = {{a!},}L )) denote the set of observations (resp. observed actions) of N agents
at all T time steps, and G = {{G}}X }T | encodes K sub-goals from all time steps In the
generative process, at time step ¢, for each agent 4, we sample a sub- goal assignment index 2! € [K]
from a fixed multinomial prior p(z) with parameter § € R¥. Given z the observed action al is
sampled from a policy network with Gaussian distribution N (14 (0%, 2}, Gt) o(0h, 2, GY)), where
the mean and the covariance matrix are determined by a generative decoder fg parameterlzed by ¢.
To proceed with the training process of LGA, we recall that the required posterior distribution
p(z|o, a, G) is computationally intractable. Therefore, we use variational expectation-maximization
(VEM) to approximate the posterior of latent variable z = {{z!}X¥ ;1T | and learn model parameter
¢ simultaneously. To continue, we use a mean-field variational distribution ¢(z) given by

(I(Z | A 0,a, G) = Hte[T},ie ( ‘ )‘fv O;5 at Gt) 4)

where A is a set of variational parameters for all sub-goal indices z, i.e., A = {{\!}¥ 1T | where
Al € RE. The joint distribution is given by

p(avz | ¢7 o, G) = Hte[T],iE[N] p( ) ( : | ¢7Oz7zszt) (5)

Using (4) and (5), ELBO = E;(;|x 0,a,¢) [logp(a,z | ¢,0,G) —logq(z | X,0,a,G)]. See Ap-
pendix B for training details with VEM iterations.

4 Experiments and Evaluation

Tasks and expert demonstrations In this work, we target the goal-conditioned navigation task
with V = 3 agents and K = 3 landmarks in a 2-D space. At each time ¢, the goal Gt = {Gi}E |
encodes the positions of all landmarks. Each i-th agent receives observation o} which contains its
position and velocity and the relative positions to all the other agents. Agent % also receives the 2- D
position of a sub-goal ¢! € {G} } £ k=1 that it needs to navigate to. The agent then decides an action a!

which contains the accelerations in each of 2-D directions. The goal of each agent is to reach the



sub-goal assigned to it. For example, in the task shown in Fig. 1a, if Goal Red is assigned to Agent
Red, Agent Red has to be in close proximity to Goal Red to receive high reward, as the individual
reward is defined as the negative distance to the assigned landmark (plus small penalty for collision).
The initial positions of agents and goals are randomly generated. The expert demonstration consists
of the observation of, the set of sub-goals {G% } | and the actions a! for all agents in all time steps,
but does not contain the indices of sub-goals that agents receive.

Baseline and evaluation Without interaction with the environment during training, we compare our
method with behavior cloning (BC) which learns the policy through supervised learning Pomerleau
(1991) in pure offline manner. Using BC, the index of the sub-goal assigned to each agent is uniformly
chosen from (1,2, ..., K) and fixed for each episode. The objective is to find a policy 74 minimizing
the loss

2

2] ’

N
E00) = B0, {0l 11,6~ Disn, 1211 ~Unif(Perm(¥.10) [Zl | (o1.6%;) o

where Unif(Perm(N, K)) denotes the uniform e~ BC -m- LGA - Exper Random

distribution over the set of all permutations.

We demonstrate the normalized episodic reward
achieved by the proposed LGA compared to
BC with respect to the numbers of given ex-
pert demonstrations in Fig. 2. Here, the total
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episodic reward is calculated by summing up
the reward from 100 episodes, where each point
is obtained by conducting with 5 random seeds.
The normalized episodic reward is constructed
by normalizing the total episodic reward with
the performance of experts and random policies
set to one and zero respectively (random policies
refer to the policies determined by a randomly
initialized network without training). The results
in Fig. 2 show that the proposed LGA consis-
tently and significantly outperforms BC. To visualize it clearly, we illustrate the trajectories of agents
using proposed LGA (Fig. 3b) compared to the baseline BC (Fig. 3c) and the expert (Fig. 3a). It can
be seen that in the trajectories in BC (Fig. 3c), the red agent fails to navigate to its assigned sub-goal
(red landmark) and collides with the blue agent, while the agents guided by LGA (ours) successfully
reached all assigned sub-goals, similar to the expert.
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o
N

o
o

500 1000 1500 2000 2500 3000 3500
Number of Expert Demonstrations

Figure 2: normalized episodic reward w.r.t. the
number of given expert demonstration.

(a) expert. (b) LGA (ours).  (c) behavior cloning.

Figure 3: Example trajectories generated by (a) expert, (b) LGA, and (c) behavior cloning.

5 Conclusion and Future Directions

In this work, we target a new kind of tasks named multi-agent goal-conditioned (MAGC) tasks and
provide a formal formulation. During training via imitation learning, we encounter the difficulty of
lacking labels of the sub-goal assignments in expert demonstrations. To address this challenge, we
proposed LGA model to learn the distribution of the sub-goal assignment labels and the universal
goal-conditioned policy simultaneously. In a cooperative navigation task, our model successfully
inferred the unknown sub-goal labels from agent trajectories and recovered agent policies. The
proposed LGA outperformed baseline method which didn’t solve the sub-goal selections. For future
work, we plan to explore the scalability of our approach to large-scale tasks involving more agents,
dynamic goals, and high-dimensional observations.
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A Related Works

We now discuss a small sample of other related works. We limit our discussions to literature regarding
either multi-agent imitation learning, goal-conditioned tasks, or Bayesian inverse planning which are
closest to our work.

Multi-agent imitation learning. The goal of multi-agent imitation learning (MAIL) is to recover
the policies of multiple agents from pre-recorded trajectories. Our work is different from literature in
multiple aspects. First, most existing work requires interactions with environments during training
(Song et al., 2018; Jeon et al., 2020; Le et al., 2017; Yang et al., 2020; Yu et al., 2019), while in this
work, we assume access to pre-recorded data without the actual environment. Second, we consider a
specific setting where behaviors of agents are supposed to be determined by not only the state but
also agent-specific time-varying goals. In this aspect, the closest work to ours is Le et al. (2017)
where a latent coordination model is learned to infer the role of each agent when recovering agent
policies. They assume inherently different agents (i.e., different positions in a soccer team), each
having a different goal and policy. In contrast, we assume exchangeable agents that share a universal
policy, while differences among agent strategies are caused solely by that in assigned goals. Besides,
Yang et al. (2020) relates agents to a set of types, where the differences between types are captured
only implicitly by a set of weights over value functions, without an explicit notion of goals as that in
this paper.

Goal-conditioned tasks. Learning a universal policy for any goal-reaching task has been exten-
sively studied in (Kaelbling, 1993; Parascandolo et al., 2020; Teh et al., 2017; Ding et al., 2019; Schaul
et al., 2015; Manderson et al., 2020; Zhou and Small, 2008; Chane-Sane et al., 2021; Eysenbach
et al., 2020; Tang and Kucukelbir, 2021; Shah et al., 2021; Bai et al., 2021). Some works focus on
learning to extract information for goals from natural language or images in different environments
(Manderson et al., 2020; Zhou and Small, 2008; Shah et al., 2021). Others mainly consider learning a
goal-conditioned policy for a single agent (Teh et al., 2017; Tang and Kucukelbir, 2021; Chane-Sane
et al., 2021; Eysenbach et al., 2020; Bai et al., 2021; Ding et al., 2019). In this work, we consider
multi-agent cases by extending the single-agent formulation in (Schaul et al., 2015; Ding et al.,
2019) to MAGC imitation learning problems. Note that multi-agent tasks have daunting challenges
compared to single-agent case Lowe et al. (2017). Moreover, in this work, unlabeled sub-goal
assignment for each agent further exacerbates the challenge of efficiently learning goal-conditioned
policy from the expert data in these semi-supervised scenarios.

Bayesian inverse planning. Our work is closely related to inverse planning framework which
infers an agent’s intention from the agent’s behavior (Baker et al., 2007, 2009), attempting to explain
human being’s goal inferences psychological model. One distinct difference between inverse planning
and our framework is that our proposed method aims to solve imitation learning problems in which
both the posterior of goal inference and agent’s policy have to be jointly optimized using variational
EM algorithm, while Bayesian inverse planning only need to directly apply Bayes’ rule. Another
work in multi-agent online coordination Wang et al. (2020) also utilizes inverse planning to infer other
agents’ goal by observing their past actions and achieves better coordination. Their goal is to learn
a goal-conditioned policy or value function in reinforcement learning settings. Shum et al. (2019)
also applies Bayesian inverse planning to infer the different types of team structure from observed
agent behaviors. Zhi-Xuan et al. (2020) performs approximate online Bayesian goal inference for
bounded-rational agents.

B Variational Expectation Maximization for LGA model

In this section, we provide the training process of LGA in details including the E-step and M-step
updates separately.

Expectation step In E-step, VEM maximizes ELBO w.r.t. variational parameters A with model
parameter ¢ fixed. We use coordinate ascent variational inference (CAVI) by updating the variational
parameters such that for each latent variable j € {2 }ic[7),ic[N]

q(j) x exp {E,_, [logp(a, z | ¢,0,G)] }, (©6)



where E,_ . denotes the expectation over all latent variables except variable j. It can be derived that
Vt € [T],i € [N], q(z! | AL, of, al, G*) follows Multi(\!). The update rule of X is derived as
1
Vk € [K], My, o< 0y - det(Sh) ™2 exp {—2(‘12 — pig) T (Bh) T (af - Nik)} (N
where pf, = pg(ol, 2t = k,G") and B!, = X, (0, 2f = k, G").

Maximization step In M-step, VEM maximizes ELBO w.r.t. model parameters ¢ with variational
parameter A fixed. We solve ¢ by maximizing ELBO(¢) as

¢ = argmin,, thk ik (log det(3;,) + (af — uly) T (35) " (af — Mka ®)

C Implementation and Training Details

We represent the decoder function fy as fully connected neural networks with two hidden layers and
256 neurons per layer. In each E-step, we apply (7). In each M-step, we repeatedly optimize (8) via
gradient methods until the improvement of generated i and X drops below 10~*. For M-step, we
use Adam optimizer with 5 x 10~% learning rate. We run the entire VEM algorithm for 200 EM steps.
We repeat the training process using 500, 1500, 2500, 3500 episodes of expert demonstrations, each
generating 5 policies with different random seeds.
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